新零售网 > 消费 >

Transformer后继有模!MSRA提出全新大模型基础架构:推理速度

来源:IT之家 发布时间:2023-07-19 12:42   阅读量:15761   

微软大模型新架构,正式向 Transformer 发起挑战!论文标题明晃晃地写道:

Retentive Network:大模型领域 Transformer 的继任者。

论文提出新的 Retention 机制来代替 Attention。来自微软亚研院和清华的研究人员,毫不讳言“野心”,大胆放话:

RetNet 实现了良好的扩展结果、并行训练、低成本部署和高效推理。

这些特性使这一基础架构,成为大语言模型中 Transformer 的有力继承者。

而实验数据也显示,在语言建模任务上:

  • RetNet 可以达到与 Transformer 相当的困惑度

  • 推理速度达 8.4 倍

  • 内存占用减少 70%

  • 具有良好的扩展性

并且当模型大小大于一定规模时,RetNet 表现会优于 Transformer。

Transformer 果真“后继有模”了?具体详情,一起来看。

解决“不可能三角”

Transformer 在大语言模型中的重要性毋庸置疑。无论是 OpenAI 的 GPT 系列,还是谷歌的 PaLM、Meta 的 LLaMA,都是基于 Transformer 打造。

但 Transformer 也并非完美无缺:其并行处理机制是以低效推理为代价的,每个步骤的复杂度为 O;Transformer 是内存密集型模型,序列越长,占用的内存越多。

在此之前,大家也不是没想过继续改进 Transformer。但主要的几种研究方向都有些顾此失彼:

  • 线性 attention 可以降低推理成本,但性能较差;

  • 循环神经网络则无法进行并行训练。

也就是说,这些神经网络架构面前摆着一个“不可能三角”,三个角代表的分别是:并行训练、低成本推理和良好的扩展性能。

RetNet 的研究人员想做的,就是化不可能为可能。

具体而言,RetNet 在 Transformer 的基础上,使用多尺度保持机制替代了标准的自注意力机制。

与标准自注意力机制相比,保持机制有几大特点:

  • 引入位置相关的指数衰减项取代 softmax,简化了计算,同时使前步的信息以衰减的形式保留下来。

  • 引入复数空间表达位置信息,取代绝对或相对位置编码,容易转换为递归形式。

另外,保持机制使用多尺度的衰减率,增加了模型的表达能力,并利用 GroupNorm 的缩放不变性来提高 retention 层的数值精度。

RetNet 的双重表示

每个 RetNet 块包含两个模块:多尺度保持模块和前馈网络(FFN)模块。

保持机制支持以三种形式表示序列:

  • 并行

  • 递归

  • 分块递归,即并行表示和递归表示的混合形式,将输入序列划分为块,在块内按照并行表示进行计算,在块间遵循递归表示。

其中,并行表示使 RetNet 可以像 Transformer 一样高效地利用 GPU 进行并行训练。

递归表示实现了 O 的推理复杂度,降低了内存占用和延迟。

分块递归则可以更高效地处理长序列。

这样一来,RetNet 就使得“不可能三角”成为可能。以下为 RetNet 与其他基础架构的对比结果:

在语言建模任务上的实验结果,进一步证明了 RetNet 的有效性。

结果显示,RetNet 可以达到与 Transformer 相似的困惑度。

同时,在模型参数为 70 亿、输入序列长度为 8k 的情况下,RetNet 的推理速度能达到 Transformer 的 8.4 倍,内存占用减少 70%。

在训练过程中,RetNet 在内存节省和加速效果方面,也比标准 Transformer+FlashAttention 表现更好,分别达到 25-50% 和 7 倍。

值得一提的是,RetNet 的推理成本与序列长度无关,推理延迟对批量大小不敏感,允许高吞吐量。

另外,当模型参数规模大于 20 亿时,RetNet 的表现会优于 Transformer。

研究团队

RetNet 的研究团队,来自微软亚研院和清华大学。共同一作为孙宇涛和董力。

孙宇涛,清华大学计算机系本科,现在在微软亚研院实习。

董力,微软亚研院研究员。他也是此前引发大量关注的“能记住 10 亿 token 的 Transformer”的论文作者之一。

RetNet 论文的通讯作者是韦福如。他是微软亚洲研究院全球研究合伙人,10 亿 token Transformer 亦是来自他的研究团队。

论文地址:

广告声明:文内含有的对外跳转链接,用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

周期股“阵痛”:化工、建材和有色预降 2023-07-19 11:41

渤海银行“老将”王锦虹回归接棒李伏安:经营管理和运营经验丰富 2023-07-19 11:27

天顺风能拟发行GDR募资不超24.2亿元 2023-07-19 10:54

5.5%,这个数字有哪些看点? 2023-07-19 10:35

关注盈利稳定品种百亿规模基金显著调仓 2023-07-19 10:13

马斯克:推特正在开发“Articles”功能,允许用户发布多媒体 2023-07-19 09:45

微软宣布今年Xbox发布会收视率创新高,科隆游戏展上将设立有史以 2023-07-19 08:44

BrandFinance公布2023年全球科技品牌价值榜,Tik 2023-07-19 08:16

消费场景恢复多家餐饮企业上半年业绩预喜 2023-07-19 08:09

欧央行管委兼德央行行长Nagel称通胀“非常棘手”预计7月再加息 2023-07-18 16:30

永诺推出YN50mmF1.8SDADSM二代镜头:适用于索尼E卡 2023-07-18 16:26

水务行业“专精特新”小巨人,舜禹股份技术实力雄厚,业绩持续放量 2023-07-18 16:19

港元拆息全线上扬隔夜息大涨至5% 2023-07-18 16:06

当果链失去苹果,它们的依赖症还能治吗? 2023-07-18 16:01

宁波:租房提取公积金每月最高可提2000元,二孩以上家庭额度上浮 2023-07-18 15:19

公牛推出防雨淋插座:封闭可悬挂设计,到手价24.9元 2023-07-18 15:05

星际荣耀双曲线三号大型液体火箭将实现500km太阳同步轨道10. 2023-07-18 15:04

微软Xbox推出《我的世界》苦力怕主题迷你冰箱,售价98美元 2023-07-18 14:55

育碧开发者:3A《波斯王子》不可能和《刺客信条》系列游戏并存 2023-07-18 14:52

萤石推出PM2宠物看护摄像机:300万像素2K画质,售419元 2023-07-18 14:46